
Copyright © 2006-20018 DefineView Consulting www.defineview.com 1

‘concurrent assertion’

it’s a vacuous world !

Copyright © 2006-20018 DefineView Consulting www.defineview.com 2

Concurrent Assertion – without an implication
sequence sr1;
req ##2 gnt;

endsequence

property pr1;
@(posedge clk) sr1;

endproperty

reqGnt: assert property (pr1) $display($stime,,,"\t\t %m PASS"); else
$display($stime,,,"\t\t %m FAIL");

Simulation Log

run -all
10 clk=1 req=0 gnt=0
10 test_basic_property.reqGnt FAIL
30 clk=1 req=1 gnt=0
30 test_basic_property.reqGnt FAIL
50 clk=1 req=1 gnt=0
70 clk=1 req=0 gnt=0
70 test_basic_property.reqGnt FAIL
90 clk=1 req=0 gnt=1
90 test_basic_property.reqGnt FAIL
90 test_basic_property.reqGnt PASS
110 clk=1 req=0 gnt=0
110 test_basic_property.reqGnt FAIL

Whenever ‘req’ is Low, the assertion FAILs !!

That’s because, a sequence simply says that ‘req’ be
true at the clock edge and that gnt must be true 2
clocks later.

It does NOT say check the sequence “Only If ‘req’ is
true at posedge clk”.

But you really don’t care for result when ‘req’ is Low.

That’s where an implication operator comes into
picture…

Copyright © 2006-20018 DefineView Consulting www.defineview.com 3

Concurrent Assertion – with an implication
sequence sr1;
##2 gnt;

endsequence

property pr1;

@(posedge clk) req |-> sr1;
endproperty

reqGnt: assert property (pr1) $display($stime,,,"\t\t %m PASS"); else
$display($stime,,,"\t\t %m FAIL");

Simulation Log

10 clk=1 req=0 gnt=0
10 test_basic_property1.reqGnt PASS
30 clk=1 req=1 gnt=0
50 clk=1 req=0 gnt=0
50 test_basic_property1.reqGnt PASS
70 clk=1 req=0 gnt=1
70 test_basic_property1.reqGnt PASS
70 test_basic_property1.reqGnt PASS
90 clk=1 req=1 gnt=0
110 clk=1 req=0 gnt=0
110 test_basic_property1.reqGnt PASS
130 clk=1 req=0 gnt=0
130 test_basic_property1.reqGnt FAIL

IMPLICATION OPERATOR (OVERLAPPING)

ANTECEDENT CONSEQUENT

In this example, we moved a part of the sequence to
the property and are using it as an antecedent to
imply a consequent.

With an implication operator, the ‘antecedent’ MUST
be TRUE to evaluate the consequent. Hence,
whenever ‘req’ is Low, the antecedent is false and the
implication simply does not fire and there is no failure
message as in the previous example.

BUT WAIT…

Now the property PASSes whenever ‘req’ is Low.

What’s going on???

Copyright © 2006-20018 DefineView Consulting www.defineview.com 4

Concurrent Assertion – Vacuous Pass – What ??

sequence sr1;
##2 gnt;

endsequence

property pr1;

@(posedge clk) req |-> sr1;
endproperty

reqGnt: assert property (pr1) $display($stime,,,"\t\t %m PASS"); else
$display($stime,,,"\t\t %m FAIL");

IMPLICATION OPERATOR (OVERLAPPING)

ANTECEDENT CONSEQUENT

LRM 3.1a (Page 232) ::

“If there is no match of the antecedent sequence_expr, then evaluation of the
implication succeeds vacuously and returns true”

A couple of ways to get around this…

One is to simply not use the action_block associated with ‘pass’ (duh…) of the
property, so that you don’t get pass indication vacuously

But what if you do want to know when the property passes…

Copyright © 2006-20018 DefineView Consulting www.defineview.com 5

Concurrent Assertion – with 'cover'… take 1…
sequence sr1;
##2 gnt;

endsequence

property pr1;

@(posedge clk) req |-> sr1;
endproperty

A_reqGnt: assert property (pr1) else $display($stime,,,"\t\t %m FAIL");

C_reqGnt: cover property (pr1) $display($stime,,,"\t\t %m PASS");

run -all
10 clk=1 req=0 gnt=0
30 clk=1 req=1 gnt=0
50 clk=1 req=0 gnt=0
70 clk=1 req=0 gnt=1
70 test_basic_property2.C_reqGnt PASS
90 clk=1 req=1 gnt=0
110 clk=1 req=0 gnt=0
130 clk=1 req=0 gnt=0
130 test_basic_property2.A_reqGnt FAIL

No action_block associated with true
eval of the property.

IMPLICATION OPERATOR (OVERLAPPING)

ANTECEDENT CONSEQUENT

In this example, we removed the action block
associated with the true (i.e. pass) evaluation of the
property to avoid the vacuous $display.

If you do need an action block for a match (i.e. Pass)
of a property, you may use a ‘cover’ statement to
cover the same property that is asserted.

You may use a ‘cover’ statement to cover the same property that is asserted. ‘cover’ does not report
vacuous pass (but note that many simulators require a run time option to 'filter' out vacuous pass on a
'cover').

Note that ‘cover’ does not allow an action_block if the property fails.

Copyright © 2006-20018 DefineView Consulting www.defineview.com 6

Concurrent Assertion – with 'cover'… take 2…
OK, what if your simulator does not filter for a vacuous pass on a 'cover'.

There are many ways to get around it. Here's one. 'cover' the sequence/property –without- an implication.

property pr1;
@(posedge clk) req |-> ##2 gnt;

endproperty

property pr2;
@(posedge clk) req ##2 gnt;

endproperty

A_reqGnt: assert property (pr1) else $display($stime,,,"\t\t %m FAIL");
C_reqGnt: cover property (pr2) $display($stime,,,"\t\t %m PASS");

No action_block associated with true
eval of the property.

run -all
10 clk=1 req=0 gnt=0
30 clk=1 req=1 gnt=0
50 clk=1 req=0 gnt=0
70 clk=1 req=0 gnt=1
70 test_basic_property2.C_reqGnt PASS
90 clk=1 req=1 gnt=0
110 clk=1 req=0 gnt=0
130 clk=1 req=0 gnt=0
130 test_basic_property2.A_reqGnt FAIL

For 'cover' we removed the implication operator.
Vacuous pass applies only when there is an implication
operator and the antecedent does not match.

Without an implication operator there is no vacuos
pass and since there is no 'failure' action_block with a
'cover' you get a pass indication only when the
property/sequence matches…

Copyright © 2006-20018 DefineView Consulting www.defineview.com 7

CUSTOMER TESTIMONIALS …

“The class was excellent, well distributed between the fundamentals and the practical examples. With a
little tweak, we can use those example assertions presented right now in our design development!

In addition I would like to thank you for seminar associated text material. The handout (book) is a few levels
above anything I have previously seen. The rules and example descriptions cover the associated topic

completely.”

Thomas Slee, Sr. Electrical Engineer, ASIC Verification Lead, Space System Loral

"The seminar on SVA was very educative and informative.
The material was in-depth, was from a hardware design/verification person's perspective and it was vendor

neutral. The information was very good and I hope to have a chance to use it in the future."

Shubha Umesh, Senior Logic Engineer, LeCroy Corporation

"I like the seminar very much since it's packed full of technical explanations and examples of System Verilog
Assertion. You slides are also easy to follow and understand."

Gloria Chen, ASIC Verification Engineer, 3PAR

“Ashok is a very good instructor – very impressive.”

John Reykjalin, President, Grizzly Peak Engineering, Inc.

"Your seminar clearly showed us that System Verilog Assertions provide new powerful interfaces and how they
are implemented as part of the language.

Your seminar was one of the best seminar I ever had."

Aki Niimura-san, Ponderosa Design

Copyright © 2006-2018 DefineView Consulting www.defineview.com 8

• 30+ years of experience in SoC, CPU design and verification at DEC, Data General,
Intel, Applied Micro, TSMC

• Author of two books
– SystemVerilog Assertions and Functional Coverage (2nd edition)

– A comprehensive guide to languages, methodology and applications

– ASIC/SoC Functional Design Verification
– A comprehensive guide to technologies and methodologies

– Introduction to SystemVerilog : Forthcoming (Springer 2021)
– - Covers entire SystemVerilog language (excluding PLI/DPI, Gate level and Specify block)

• 19 US Patents on 3DIC and SoC verification

• Expertise in:
– Coverage Driven Verification (CDV),
– Assertion Based Verification (ABV),
– Universal Verification Methodology (UVM),
– Constrained Random Verification,
– Behavioral/Architectural modeling,
– Static Formal verification,
– Hardware Acceleration,
– ESL/Virtual Platform (TLM 2.0), etc. Visit www.defineview.com

Ashok B. Mehta

Copyright © 2006-2018 DefineView Consulting www.defineview.com 9

Ashok B. Mehta – 19 issued US patents

Copyright © 2006-2018 DefineView Consulting www.defineview.com 10

This book provides a hands-on, application-oriented guide to
the language and methodology of both SystemVerilog
Assertions and SystemVerilog Functional Coverage.

Readers will benefit from step-by-step approach to functional
hardware verification using SystemVerilog Assertions and
Functional Coverage.

The book has a strong end-user perspective, which makes it
plenty easy to digest complex features and apply them with
ease to a design.

Plenty of real-life applications

This is an excellent Reference Book

The book will enable design verification engineers to uncover
hidden and hard to find bugs, point directly to the source of
the bug, provide for a clean and easy way to model complex
timing checks and objectively answer the question ‘have we
functionally verified everything’.

Copyright © 2006-2018 DefineView Consulting www.defineview.com 11

This book introduces all required technologies and methodologies needed to create
a comprehensive, functional design verification strategy and environment.

The author describes industry standard technologies such as

UVM (Universal Verification Methodology)

SVA (SystemVerilog Assertions)

SFC (SystemVerilog Functional Coverage)

CDV (Coverage Driven Verification)

Low Power Verification (Unified Power Format UPF)

AMS (Analog Mixed Signal) verification

Virtual Platform TLM2.0/ESL (Electronic System Level) methodology

Static Formal Verification

LEC (Logic Equivalency Check)

Hardware Acceleration

Hardware Emulation, Hardware/Software Co-verification

PPA (Power Performance Area) analysis on a virtual platform

Reuse Methodology from Algorithm/ESL to RTL, and other overall methodologies

Copyright © 2006-20018 DefineView Consulting www.defineview.com 12

happy asserting…

For a detailed training that takes you through System Verilog Assertions and
Functional Coverage language and methodology step by step with

examples/simulation logs, real life applications and practical LABs please
contact…

DefineView Consulting
www.defineview.com

ashok_mehta@yahoo.com

