
System Verilog Assertions
Language and Methodology

Comprehensive
1 Day Training Class

Ashok B. Mehta

DefineView Consulting

http://www.defineview.com
© 2006-2008

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 22

Training :: Abstract

• Abstract

– System Verilog Assertions (SVA) is a powerful subset of
the IEEE 1800 System Verilog standard.

– Its hardware oriented concurrent semantics allow for
intuitive development of complex multi-clock domain
checkers to catch those elusive bugs at the source (white
box observability).

– SVA also allows for clean separation of DV logic from the
design logic and allows for parameterization of properties
resulting in a modular reusable methodology.

• Course Highlights

– Taught from an end user point of view, each operator,
feature is explained in detail using comprehensive
examples, timing diagrams and simulation logs.

– Real life applications are discussed to put it all in
perspective.

– A reference grade handout book is provided to the class.
It has comprehensive detail on each page that can serve
as excellent reference material for future.

– Labs are geared to solidify understanding of key concepts
using application oriented designs.

– Class also explains practical ways to deploy SVA into your
existing Verilog/System Verilog methodology and
delineates real life methodology components that you can
apply right away.

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 33

Training :: Agenda

• Introduction to Assertions

– What’s an assertion? Why can’t I just use Verilog?

– Advantages of Assertion Based Verification (ABV) .

– Assertion Based Verification (ABV) Methodology components

• System Verilog Assertions :: Syntax and Semantics (with
applications)

– Immediate assertions

– Concurrent assertions - Basics

• clocking basics; formal arguments; severity levels; threads

• Sequence introduction

• Property introduction (with/without an implication)

• Vacuous pass?

• Binding properties.

• Threading (what are the performance implications?)

– Sampled value functions (in property/sequence and procedural)

• Functions that return boolean pass/fail: $rose, $fell, $stable

• Function that return sampled value; $past (with/without gating expr.)

– Sequence Operators

• ##m and ##[m:n] clock delay (SVA allows only fixed delays. So what if
you want variable delays??)

• [*] and [*m:n] – Consecutive repetition operator

• [=] and [=m:n] – Non-consecutive repetition operator

• [->] and [-> m:n] – Goto (non-consecutive) repetition operator

• Pros/Cons of infinite ($) range

• ‘throughout’, ‘within’, ‘intersect’, 'first_match'

• 'and' and 'or' of sequences with/without delay range

• ‘intersect’ vs. ‘and’

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 44

Training :: Agenda (contd.)

– Property operators

– ‘not’ operator

– If … else

– ‘disable iff’

– Recursive property

– Mutually exclusive

– 0 delay infinite loop

– Restrictions

– System functions

– $onehot, $onehot0, $isunknown, $countones

– Multiple Clocks

– Multiply clocked sequences and properties – legal and
Illegal usage

– Multiply clocked properties and ‘and’, ‘or’, ‘not’
operator

– Multiply clocked properties – Clock resolutions

– Local variables (one of the most powerful features...)

– Basics and Visibility rules, legal and illegal usage

– Pipelined behavior (threads)

– Detecting and using endpoint of a sequence

– .ended, .matched

– The ‘expect’ statement, 'assume' statement

– Embedding concurrent assertions in procedural code

– Calling subroutines

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 55

Training :: Agenda :: LABs

• LABs

– LAB 1: Learn how to 'bind' property module with design
module.

• Understand vacuous pass and properties with/without
implication

– LAB 2: Enforces how pipelined threads of a property
work.

– LAB 3: FIFO

• A simple FIFO design is presented. You will code different
properties to meet various FIFO fail conditions.

• FIFO assertions are some of the most useful assertions to
code for any design. This lab teaches how to do that so that
you can apply them directly to your design.

– LAB 4: COUNTER Assertions

• Code different properties to meet various Counter fail
conditions.

• Enforces the use of Local Variables, $past system task, etc.

– More labs will be conducted if time permits

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 66

CUSTOMER TESTIMONIALS …

“The class was excellent, well distributed between the fundamentals and the practical

examples. With a little tweak, we can use those example assertions presented right

now in our design development!

In addition I would like to thank you for seminar associated text material. The handout

(book) is a few levels above anything I have previously seen. The rules and example

descriptions cover the associated topic completely.”

“The class was excellent, well distributed between the fundamentals and the practical

examples. With a little tweak, we can use those example assertions presented right

now in our design development!

In addition I would like to thank you for seminar associated text material. The handout

(book) is a few levels above anything I have previously seen. The rules and example

descriptions cover the associated topic completely.”

Thomas Slee, Sr. Electrical Engineer, ASIC Verification Lead, Space System LoralThomas Slee, Sr. Electrical Engineer, ASIC Verification Lead, Space System Loral

"The seminar on SVA was very educative and informative.

The material was in-depth, was from a hardware design/verification person's

perspective and it was vendor neutral. The information was very good."

"The seminar on SVA was very educative and informative.

The material was in-depth, was from a hardware design/verification person's

perspective and it was vendor neutral. The information was very good."

Shubha Umesh, Senior Logic Engineer, LeCroy CorporationShubha Umesh, Senior Logic Engineer, LeCroy Corporation

"I like the seminar very much since it's packed full of technical explanations and

examples of System Verilog Assertion. You slides are also easy to follow and

understand."

"I like the seminar very much since it's packed full of technical explanations and

examples of System Verilog Assertion. You slides are also easy to follow and

understand."

Gloria Chen, ASIC Verification Engineer, 3PARGloria Chen, ASIC Verification Engineer, 3PAR

“Ashok is a very good instructor – very impressive.”“Ashok is a very good instructor – very impressive.”

John Reykjalin, President, Grizzly Peak Engineering, Inc.John Reykjalin, President, Grizzly Peak Engineering, Inc.

"Your seminar clearly showed us that System Verilog Assertions provide new powerful

interfaces and how they are implemented as part of the language.

Your seminar was one of the best seminar I ever had."

"Your seminar clearly showed us that System Verilog Assertions provide new powerful

interfaces and how they are implemented as part of the language.

Your seminar was one of the best seminar I ever had."

Aki Niimura-san, Ponderosa DesignAki Niimura-san, Ponderosa Design

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 77

Ashok Mehta has worked in the semiconductor industry for 24+ years in hardware
design and verification engineering / management positions at companies such
as Digital, Data General, Intel, Philips Semiconductor, AMCC and many startups.

At Digital, he worked on the VAX System design/verification team that introduced to
the company the industry’s first truly concurrent HDL called HiLo, trained
groups of engineers who were mostly familiar with internally developed
procedural languages and used it for design and verification. He worked on
introducing the concepts of Transaction level modeling, constrained random
stimulus, clock accurate reference models/checkers (now known as
scoreboards) and embedded checker libraries (now known as assertions).

At Data General, he worked with the team that was the first to introduce and fully
deploy Verilog/PLI for design and verification for DG’s High End Systems
Division. He also taught Verilog (which was very new to most designers) to
various internal groups at DG.

At Intel, he worked in the Architectural Verification team of the first Pentium and
introduced to the company the concepts of verification environments to stress
pipelined behavior, directed and constrained random stimulus generation,
among other. He also designed a new Bus Functional Language geared to
support Pentium’s pipelined bus architecture, snooping behavior and deployed
it successfully to find numerous bugs in the Pentium Bus Unit and First Level
Cache.

At AMCC, he managed the processor verification team that employed the latest in
SystemVerilog methodologies using class libraries, assertions, functional cover
points and scoreboards to verify a brand new processor and L2 cache
subsystem.

Ashok also managed SoC Verification teams at startups such as Lara/EmpowerTel
Networks, Chameleon systems and Nazomi Communications.

Ashok has been a member of technical sub-committees on IEEE Verilog, SDF, and EIA
576.

Ashok brings real life experience as a user of HDL and HVL languages and
methodologies to the training class.

About the instructor

Copyright © 2006-2008 DefineView Consulting (www.defineview.com) 408-309-1556 88

happy asserting…

Please visit our web site for further detail

DefineView Consulting
(www.defineview.com)

(email) info@defineview.com
(phone) 408.309.1556

501 Pine Wood Lane
Los Gatos, CA 95032

Please visit our web site for further detail

DefineView Consulting
(www.defineview.com)

(email) info@defineview.com
(phone) 408.309.1556

501 Pine Wood Lane
Los Gatos, CA 95032

