
Real Life, in-depth, application oriented

System Verilog Assertions
&

Functional Coverage

Language & Methodology Training

DefineView Consulting
Los Gatos, CA

DefineView Consulting
Los Gatos, CA

Design Verification Consulting Services
by

Seasoned Design and Verification professionals

Contact Us
Web: http://www.defineview.com

Email: info@defineview.com

Phone: (408) 309-1556

Copyright © 2006-2009 DefineView Consulting (www.defineview.com) 408-309-1556 22

• Taught by seasoned Design/Verification end users of HDL, HVL
languages with years of experience towards first pass silicon success.

• The end user perspective distinguishes us from others. We provide
practical hints on what, how and why of Assertion Based Verification
(ABV) and Functional Coverage methodologies and applications
derived from real life projects.

• The training is in-depth and clearly explains language semantics with
detailed timing diagrams/simulation logs coupled with plenty of
Practical Applications.

• LABs are geared to confirm understanding of key concepts using
application oriented designs.

• Class includes a 300+ page Reference Grade Training Book and 60+
page LAB book.

Why choose DefineView for your training needs?

"Ashok brings invaluable practical insights on how SVA will help you
survive in the DV trenches."

Matt Cossoul, Director Applications, Abound Logic

Customer Testimonials

“The training class was excellent, well distributed between the
fundamentals and the practical examples. With a little tweak, we
can use those examples right now in our design development!

The training book is a few levels above anything I have previously
seen. The rules, example descriptions cover the topics completely.”

Thomas Slee, ASIC Verification Lead, Space System Loral

"Ashok is a very good presenter. Meticulous and thorough with the
right amount of technical detail without losing the audience."

Ravi Reddy, President, Aurora VLSI

Copyright © 2006-2009 DefineView Consulting (www.defineview.com) 408-309-1556 33

Comprehensive 2 Day Training Agenda

• Introduction to Assertions

– What’s an assertion? Why can’t I just use
Verilog? SVA advantages over Verilog.

– Advantages of Assertion Based Verification
(ABV) .

– Assertion Based Verification (ABV)
Methodology components

• Who writes them? What types of
assertions do you write? etc.

• System Verilog Assertions :: Syntax/Semantics
(with applications)

– Immediate assertions

– Concurrent assertions - Basics

• clocking basics; formal arguments;
severity levels; threads

• Sequence introduction

• Property introduction (with/without an
implication)

• Vacuous pass ??

• Binding properties.

• Threading (what are the performance
implications …)

– Sampled value functions (in
property/sequence and procedural)

• Functions that return boolean pass/fail:
$rose, $fell, $stable

• Function that return sampled value;
$past (with/without gating expr.)

– Property/Sequence Operators

• ##m and ##[m:n] clock delay

• SVA allows only fixed delays. So what if
you want variable delays?

• [*] and [*m:n] – Consecutive repetition
operator

• [=] and [=m:n] – Non-consecutive
repetition operator

• [->] and [-> m:n] – Goto (non-
consecutive) repetition operator

• Pros/Cons of infinite ($) range

• ‘throughout’, ‘within’, ‘intersect’,
'first_match'

• 'and' and 'or' of sequences with/without
delay range

• ‘intersect’ vs. ‘and’

– Property operators

• ‘not’ operator

• If … else

• ‘disable iff’

– Recursive property

• Mutually exclusive, Restrictions

• 0 delay infinite loop

– System functions

• $onehot, $onehot0, $isunknown,
$countones

– Multiple Clocks

• Multiply clocked sequences and
properties – legal and Illegal usage

• Multiply clocked properties and ‘and’,
‘or’, ‘not’ operator

• Multiply clocked properties – Clock
resolutions

– Local variables (one of the most powerful
features...)

• Basics and Visibility rules, legal and
illegal usage

• Pipelined behavior (threads)

• Special consideration for ‘and’ and ‘or’

– Detecting and using endpoint of a sequence

• .ended, .matched

– The ‘expect’ statement, 'assume' statement

– Embedding concurrent assertions in procedural
code

– Calling subroutines

– Asynchronous Assertions (careful with them)

– Multiple implications in a property;

– blocking action_blocks

• System Verilog Functional Coverage (with
applications)

– Code coverage vs. Functional coverage

– Coverage driven methodology
(when/how/what should you cover?)

– Features

• ‘covergroup’ , ‘coverpoint’ , ‘bins’

• ‘cross’ coverage and Transition
coverage

• Wildcard bins , ‘ignore_bins’ and
‘illegal_bins’

• ‘binsof’ ‘intersect’

– Coverage options

• Instance specific , ‘covergroup’ type

– System tasks and Coverage methods for use in
procedural code

Copyright © 2006-2009 DefineView Consulting (www.defineview.com) 408-309-1556 44

Training LABs About the Instructor

LABs

• LAB 1: Learn how to 'bind' property module with
design module.

– Understand vacuous pass and properties
with/without implication

• LAB 2: Enforces how pipelined threads work.

• LAB 3: FIFO

– A simple FIFO design is presented. You will
code different properties to meet various
FIFO fail conditions.

– FIFO assertions are some of the most useful
assertions to code for any design. This lab
teaches how to do that so that you can
apply them directly to your design.

• LAB 4: COUNTER Assertions

– Code different properties to meet various
Counter fail conditions.

– Enforces the use of Local Variables, $past
system task, etc.

• LAB 5: DATA TRANSFER BUS PROTOCOL
Assertions

– Code different properties to meet bus
protocol fail conditions.

– Exemplifies temporal domain assertions
coding ($stable, $rose, throughout, etc.)

– Shows two different ways to code the same
property.

• LAB 6: PCI PROTOCOL Assertions

– Create a test plan for a basic PCI Read Bus
Transaction.

– Write properties to catch key temporal
domain protocol violations.

About the Instructor

Ashok Mehta is the principal instructor at
DefineView who has worked in the
semiconductor industry for over 20 years in
hardware design and verification
engineering/management positions at
companies such as INTEL, Digital, AMCC and
many startups.

He brings to the class real life experience as an end
user of HDL/HVL languages and methodologies
that he personally deployed working on many
successful silicon tape-outs.

He provides practical in-sight to each
feature/operator of the language to show
exactly how it will help you solve your
problem. He has an enthusiastic style of
teaching welcoming any/all questions from
the class striving to provide utmost clarity to
the answers.

At INTEL, he worked in the Architectural
Verification team of the first Pentium and
introduced to the company the concepts of
verification environments to stress pipelined
behavior, directed and constrained random
stimulus generation, among other. He also
designed a new Bus Functional Language
geared to support Pentium’s pipelined bus
architecture, snooping behavior and deployed
it successfully to find numerous bugs in the
Pentium Bus Unit and First Level Cache.

At AMCC, he managed a team that employed the
latest in SystemVerilog methodologies using
class libraries, assertions, functional cover
points and scoreboards to verify a complex L2
cache subsystem.

Ashok was also a hands-on manager at startup
companies Chameleon Systems, empowerTel
Networks and Nazomi communications.

Ashok has been a member of technical sub-
committees on IEEE Verilog- SDF, and EIA
576. Ashok holds a MSEE from University of
Missouri-Rolla.

Ashok brings real life end user perspective to the
training class.

Feel free to drop an email or call Ashok with any
questions on System Verilog in general and
Assertions in particular.

Email: ashok@defineview.com

Phone: 408-309-1556

